GENERALIZED SPHERICAL FUNCTIONS ON REDUCTIVE p-ADIC GROUPS

نویسندگان

  • JING-SONG HUANG
  • MARKO TADIĆ
چکیده

Let G be the group of rational points of a connected reductive p-adic group and let K be a maximal compact subgroup satisfying conditions of Theorem 5 from Harish-Chandra (1970). Generalized spherical functions on G are eigenfunctions for the action of the Bernstein center, which satisfy a transformation property for the action of K. In this paper we show that spaces of generalized spherical functions are finite dimensional. We compute dimensions of spaces of generalized spherical functions on a Zariski open dense set of infinitesimal characters. As a consequence, we get that on that Zariski open dense set of infinitesimal characters, the dimension of the space of generalized spherical functions is constant on each connected component of infinitesimal characters. We also obtain the formula for the generalized spherical functions by integrals of Eisenstein type. On the Zariski open dense set of infinitesimal characters that we have mentioned above, these integrals then give the formula for all the generalized spherical functions. At the end, let as mention that among others we prove that there exists a Zariski open dense subset of infinitesimal characters such that the category of smooth representations of G with fixed infinitesimal character belonging to this subset is semi-simple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation theory of p-adic groups and canonical bases

In this paper, we interpret the Gindikin–Karpelevich formula and the Casselman–Shalika formula as sums over Kashiwara–Lusztig’s canonical bases, generalizing the results of Bump and Nakasuji (2010) [7] to arbitrary split reductive groups. We also rewrite formulas for spherical vectors and zonal spherical functions in terms of canonical bases. In a subsequent paper Kim and Lee (preprint) [14], w...

متن کامل

Factorization of unitary representations of adele groups

One disclaimer is necessary: while in principle this factorization result makes it clear that representation theory is relevant to study of automorphic forms and L-functions, in practice there are other things necessary. In effect, one needs to know that the representation theory of reductive linear p-adic groups is tractable, so that conversion of other issues into representation theory is a c...

متن کامل

CONSTANT TERM OF SMOOTH Hψ-SPHERICAL FUNCTIONS ON A REDUCTIVE p-ADIC GROUP

Let ψ be a smooth character of a closed subgroup, H, of a reductive p-adic group G. If P is parabolic subgroup of G such that PH is open in G, we define the constant term of every smmoth fubction on G which transforms by ψ under the right action of G. The example of mixed models is given: it includes symmetric spaces and Whittaker models. In this case a notion of cuspidal function is defined an...

متن کامل

Gelfand-Kazhdan criterion

Proofs that endomorphism (convolution) algebras are commutative most often depend upon identifying an anti-involution to interchange the order of factors, but which nevertheless acts as the identity on the algebra or suitable subalgebras. Silberger gave such an argument for the spherical Hecke algebras of p-adic reductive groups, for example. Apparently the first occurrence of the Gelfand-Kazhd...

متن کامل

A combinatorial description of the affine Gindikin-Karpelevich formula of type A_{n}(1)

The classical Gindikin-Karpelevich formula appears in Langlands’ calculation of the constant terms of Eisenstein series on reductive groups and in Macdonald’s work on p-adic groups and affine Hecke algebras. The formula has been generalized in the work of Garland to the affine Kac-Moody case, and the affine case has been geometrically constructed in a recent paper of Braverman, Finkelberg, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005